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We investigate some aspects of the soliton dynamics in ana-helical protein macromolecule within the steric
Davydov-Scott model. Our main objective is to elucidate the important role of the helical symmetry in the
formation, stability, and dynamical properties of Davydov’s solitons in ana helix. We show, analytically and
numerically, that the corresponding system of nonlinear equations admits several types of stationary soliton
solutions and that solitons which preserve helical symmetry are dynamically unstable: once formed, they decay
rapidly when they propagate. On the other hand, the soliton which spontaneously breaks the local translational
and helical symmetries possesses the lowest energy and is a robust localized entity. We also demonstrate that
this soliton is the result of a hybridization of the quasiparticle states from the two lowest degenerate bands and
has an inner structure which can be described as a modulated multihump amplitude distribution of excitations
on individual spines. The complex and composite structure of the soliton manifests itself distinctly when the
soliton is moving and some interspine oscillations take place. Such a soliton structure and the interspine
oscillations have previously been observed numerically[A. C. Scott, Phys. Rev. A26, 578 (1982)]. Here we
argue that the solitons studied by Scott are hybrid solitons and that the oscillations arise due to the helical
symmetry of the system and result from the motion of the soliton along thea helix. The frequency of the
interspine oscillations is shown to be proportional to the soliton velocity.
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I. INTRODUCTION

In the 1970s Davydov[1] proposed a nonlinear mecha-
nism for the storage and transfer of vibrational energy(in-
trapeptide vibration Amid-I) in alpha-helical proteins. As a
result of the interaction of high-frequency Amid-I vibrations
(vibrations of double C-O bond of peptide groups) with the
low-frequency acoustic vibrations of the protein, a self-
trapping of the Amid-I vibration takes place. This idea has
attracted a lot of interest, which has increased even further
after the appearance of a paper[2] in which Davydov and
Kislukha demonstrated that the corresponding system of
equations for a molecular chain admits, in the continuum
approximation, a solitonic solution. This solution describes a
self-trapped quasiparticle(a lump of vibrational Amid-I en-
ergy) that propagates at constant velocity and is acompanied
by a self-consistent chain deformation[3].

Since then, various properties of such one-dimensional
polaronlike self-trapped states have been studied in detail
both analytically and numerically(see, e.g., Refs.[4–6]).
Dynamical properties of Davydov solitons and their forma-
tion, given various initial conditions of the chain, have been
investigated in discrete chains and in continuum models.
Most of these results have been obtained for a single chain.
Often they have involved numerical values of the parameters

that are characteristic of real proteins; thus very often these
results have been discussed in the context of ana helix. In
reality, however, reala helices contain three strands, each of
which contains periodically placed peptide groups connected
by hydrogen bonds. A three-strand model for ana helix was
proposed in Ref.[7], where the stationary states were stud-
ied. This model represents ana helix as a three-strand struc-
ture with three peptide groups per cell in a plane perpendicu-
lar to the protein axis. Afterwards the properties of such
soliton states were studied analytically in Ref.[8,9] and nu-
merically in Ref.[10] and they were also considered recently
in Ref. [11].

This model does not take into account the helical structure
of proteins, and so afterwards the model was improved in
Refs.[12,13]. In Ref. [13] the soliton solutions which do not
break the chiral symmetry were found analytically. So far,
the most complete numerical study of the problem has been
presented by Scott in Ref.[12], where the formation of a
soliton in ana-helix chain of a finite length had been inves-
tigated using the initial excitation of a certain form localized
on two of the three peptide groups at the end of the chain.
Scott showed there that, under such conditions, a soliton can
be formed and that this soliton propagates along the protein
with a constant velocity. It has turned out that such a soliton
has an inner structure and that some interchain oscillations of
energy take place. These oscillations were compared by Scott
with the lines in experimentally measured Raman spectra of
living cells (see also Ref.[14]). Let us add here also that in
this numerical modeling only one type of initial excitation
was used, and, as a result, only one value of the velocity of
the soliton of a given symmetry was obtained. However, the
full picture of the energy transport in thea-helical proteins
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requires the clasification of soliton states of various symme-
tries, and the study of their dynamics at arbitrary velocities.
In fact, we expect the dynamics to contain some oscillatory
features. This is due to the discrete nature of the chain and it
can also be related to the helical symmetry of the protein and
the symmetry of the initial excitation.

The aim of the present paper is to study the soliton states
in an a helix, to investigate their properties and their stabil-
ity, and to look at the dependence of the internal soliton
vibrations on the velocity of the soliton propagation. In Sec.
II a general description of the model is given. In Sec. III the
elementary excitations of thea helix are presented. In Sec.
IV we describe the results of our analytical studies of soliton
states in the adiabatic approximation while the results of our
numerical modeling are presented in Sec. V. In Sec. VI we
discuss the applicability of the adiabatic approximation and
in the Conclusion section we make further comments on the
physical relevance of our results.

II. GENERAL MODEL

Protein macromolecules are long nonbranched polymer
chains which are formed as a result of polymerization of
amino acids. Amino acid residues in such polymer chains are
connected by thepeptide bondsin which four atoms
(OCNH) of thepeptide groupand twoa-carbon atoms of the
residues are placed in one plane. So the backbone of such a
polypeptide chain can be described as a set of comparably
rigid planes divided by methilene groups(-CHR-). Because
peptide groups(PG’s) are bonded with methilene groups by
ordinary bonds, a free rotation of PG planes around these
bonds is possible. Due to such rotations, a polypeptide chain
can take different spatial configurations. In particular, it can
be rolled into a helix. Such a configuration of the polypeptide
chain is stabilized by the intrachain hydrogen bonds which
are formed between a hydrogen atom of a PG and an oxygen
atom of the fourth group along the chain. Such a helical
structure, calleda-helix, has 3.6 peptide groups per turn.
Thus the equilibrium positions of the repeated units(PG’s) in
an a helix are determined by the radius vectors

RWs0d
l = rFeWx cosS2pl

3.6
D + eWy sinS2pl

3.6
DG + eWz

al

3.6
, s1d

whereeWisi =x,y,zd are unit vectors along coordinate axes,a
is a period of the helix,r is its radius, andl is an integer
labeling each group along the polypeptide chain. The nearest
neighbors(sites l and l ±1) along the chain are bound by
rigid valence bonds and eachlth group in a helix is bound
with sl ±3dth groups by soft hydrogen bonds forming three
spines along the helix.

The three spines along thea helix are formed by units
with numbers:

l1 = 3n − 1, l2 = 3n, l3 = 3n + 1, s2d

or we can write

l = 3n + s j − 2d, s3d

where j =1,2,3 andn runs from 1 toN with N being the
number of PG’s in a hydrogen bond strand.

Thus, for the ennumeration of PG’s in ana helix, we can
use the two numbersj andn where j , a cyclic index modulo
3, indicates the spine of the hydrogen bond, andn ennumer-
ates PG in a spine or elementary cells of three PG’s from
different spines. We can use a different numbering of the
cyclic index: j8= j −2=−1,0, +1, or j9= j −1=0,1,2, or j
=1,2,3.

Introducing a double indexh j ,nj, instead of the single
numberl, the equilibrium positions of PG’s in ana helix (1)
can be rewritten as

RW j ,n
s0d = rFeWx cosS2pn

6
− u jD − eWy sinS2pn

6
− u jDG

+ eWz S5an

6
+ D jD , s4d

whereu j =s2p /3.6d j −u0 andD j =saj /3.6d−z0. The spines of
hydrogen bonds in ana helix are also rolled into a helix of
length 5a with six PG’s per turn.

Due to the softness of hydrogen bonds, PG’s can be dis-
placed and their positions in ana helix are

RW j ,n = RW j ,n
s0d + uW j ,n, s5d

whereuWn are the displacements of the peptide groups from
their equilibrium positions(4).

The potential energy of displacements depends on the dis-
tance between the groups and so we can perform the approxi-
mation of using only the nearest-neighbors interaction. The
nearest neighbors along the polypeptide chain are bound to-
gether by rigid valence bonds, much more rigid than the
hydrogen bond. We can thus assume that the distances be-
tween thelth andsl ±1dth groups are fixed while the potential
energy of displacements is determinded only by the variation
of the hydrogen bond length and, in a harmonic approxima-
tion, it can be written as

V = o
j ,n

fVsRj ,n; j ,n−1d − VsR0dg = o
j ,n

1

2
wHsDRj ,n; j ,n−1d2, s6d

wherewH is the elasticity of the hydrogen bond. In Eq.(6),

R0 = Rj ,n; j ,n−1
0 = uRW j ,n

s0d − RW j ,n−1
s0d u = Îf2r sinsp/6dg2 + s5a/6d2,

s7d

is the equilibrium length of the hydrogen bond, and

DRj ,n; j ,n−1 = uRW j ,n − RW j ,n−1u − R0 =
sRW j ,n − RW j ,n−1dsuW j ,n − uW j ,n−1d

R0

s8d

are its changes due to the small displacements. The total
energy of the displacements is the sum of the potential en-
ergy (6) and the kinetic energy which is given by the relation

T = o
j ,n

1

2
MuẆ j ,n

2 , s9d

whereM is the mass of a PG anduẆ j ,n=duW jn /dt are the ve-
locities of the displacements.
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Due to the assumption that the valence bonds are suffi-
ciently rigid and that the distances between thelth and
sl ±1dth groups are fixed, the three components of the PG
displacement are not independent. In fact, we have two con-
ditions which correspond to the assumption that the distances
between eachlth PG and its two neighbors,l −1 andl +1, are
fixed. For small displacements this means that the displace-
mentul of the lth PG is orthogonal to the vectors connecting
the lth and thesl ±1dth groups:

uWl · sRWl − RWl−1d = 0, uWl · sRWl − RWl+1d = 0. s10d

Let us represent the vectoruWl using three orthogonal unit
vectorseW l

srd, eW l
std, andeWz:

uW l = eW l
srdul

srd + eW l
stdul

std + eWzul
i, s11d

where eWzul
i=uW l

i is the longitudinal(along thea-helix axis)
component of the displacement. The transversal component
uW l

'=eW l
srdul

srd+eW l
stdul

std is represented through the radial and
tangential components relative to the axis. Here

eW l
srd = eWx cosS2pl

3.6
D + eWy sinS2pl

3.6
D ,

eW l
std = − eWx sinS2pl

3.6
D + eWy cosS2pl

3.6
D . s12d

In this case condition(10) takes the form

a

3.6
ul

suud + 2r sin2S p

3.6
Dul

srd + r sinS2p

3.6
Dul

std = 0,

a

3.6
ul

suud − 2r sin2S p

3.6
Dul

srd + r sinS2p

3.6
Dul

std = 0. s13d

From these equations it is easy to find that

ul
srd = 0, ul

std = −
a

3.6r sins2p/3.6d
ul

i. s14d

Thus there is only one independent degree of freedom of
the PG displacement and the vector of the displacementuW j ,n
can be represented as

uW j ,n = eW j ,nuj ,n, s15d

where

eW j ,n =
1

C
H− aFsinS2pn

6
− u jDeWx + cosS2pn

6
− u jDeWyG

+ 3.6r sinS2p

3.6
DeWzJ , s16d

C =Îa2 + F3.6 sinS 2p

3,6
DrG2

s17d

is the unit vector which determines the direction of small
displacements without changing the valence-bond length and
uj ,n is the amplitude of the displacements.

Taking this into account, we obtain the following expres-
sion for the change of the hydrogen bond length(8):

DRj ,n; j ,n−1 = gsuj ,n − uj ,n−1d, s18d

where

g =
ra

CR0
Ssin

p

3
+ 3 sin

2p

3.6
D . s19d

Thus the potential energy(6) is

V = o
j ,n

1

2
wsuj ,n − uj ,n−1d2, s20d

wherew=g2wH is an effective elasticity coefficient.
Therefore the Hamiltonian of thea-helix vibrations can

be rewritten in the form

Hv = o
j ,n
F pj ,n

2

2M
+

1

2
wsuj ,n − uj ,n−1d2G , s21d

wherepj ,n are the momentum operators that are canonically
conjugate to the operators of the PG’s displacementuj ,n.

We now focus on the Hamiltonian for the quasiparticle.
The states of the Amid-I vibrations of the peptide groups[or
extra electron(s)] in the tight-binding approximation are de-
scribed by the Hamiltonian

He = o
l
SE0Al

+Al + o
m

LmsAl
+Al−m + Al−m

+ AldD s22d

wherel andm run over the 3N values along the polypeptide
chain. HereAl

+ andAl are, respectively, the creation and an-
nihilation operators of the quasiparticle at thelth site of the
chain;Lm are the matrix elements of the excitation exchange
between sitesl and l ±m. The matrix elementsLm with m
being a multiple of 3 describe the energy exchange between
the PG’s of the same spine while the others describe the
excitation exchange between the spines. For Amid-I excita-
tions in ana helix the numerical values ofLm decrease with
increasingm. In what follows we will take into account only
two of the most important terms:L1=L, which describes the
interspine exchange, andL3=−J, which describes the in-
traspine one. The signs of the corresponding matrix elements
are chosen in such a way that they correspond to the
polypeptidea helix [15,6].

Using the double indexh j ,nj: Al =Aj ,n we can rewrite Eq.
(22) as

He = o
n
So

j

fE0Aj ,n
+ Aj ,n − JAj ,n

+ sAj ,n+1 + Aj ,n−1dg

+ LfA1,n
+ sA3,n−1 + A2,nd + A2,n

+ sA1,n + A3,nd

+ A3,n
+ sA2,n + A1,n+1dgD , s23d

wheren runs from 1 toN and ennumerates the cells on each
of the three strands.

We now consider the Hamiltonian for the interaction of a
quasiparticle with the chain distortion. Due to the softness of
the hydrogen bonds and the stiffness of the valence bonds,
the distance between thenth and sn±3dth group changes
only under distortions of thea helix. So, taking into account
the on-site deformation potential only(the dependence ofJ
on the distance between the groups is not so essential for an
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a helix [6]), we can write the interaction Hamiltonian in the
form

Hint = o
j ,n

xsuj ,n+1 − uj ,n−1dAj ,n
+ Aj ,n, s24d

wherex is a constant parametrizing the strength of the exci-
ton (electron)-phonon interaction.

The total Hamiltonian

H = He + Hv + Hint, s25d

whereHe, Hv, andHint are given by Eqs.(23), (21), and(24),
respectively, describes a molecular helical chain in which the
equillibrium positions of its units(PG’s) are given by the
radius vectors

RW j ,n
s0d = rFeWx cosS2p

3
jD + eWy sinS2p

3
jDG + eWzaSn +

j

3
D ,

s26d

where j is a cyclic index(of modulus 3), which ennumerates
the three spines along thez axes, andn is the position index
of an elementary cell within the three strands. The expression
(26) describes a molecular chain which is rolled into a helix
with three units per turn of the helix. We can consider such a
molecular chain as a model of thea-helical protein. In this
case we can neglect the rolling of the hydrogen bonds into a
superhelix.

III. ELEMENTARY EXCITATIONS IN AN a HELIX

The quasiparticle Hamiltonian(23) can be diagonalized
by the following unitary transformation:

Aj ,m =
1

ÎN
o
m,k

eikmv j ,mskdBm,k, v j ,mskd =
1
Î3

eism+k/3d j ,

s27d

where the wave numberk and the band indexm are given by

k =
2p

N
l, l = 0, ± 1, . . . , ±

N − 1

2
, m =

2p

3
n, n = 0, ± 1.

s28d

Under transformation(27), the Hamiltonian(23) transforms
into

He = o
m,k

EmskdBm,k
+ Bm,k, s29d

where the energy dispersion in the three bandssm
=0, ±2p /3d is given by

Emskd = E0 − 2J cosskd + 2L cosS k

3
+ mD s30d

or, in explicit form, by

E0skd = E0 − 2J cosskd + 2L cosS k

3
D ,

E±skd = E0 − 2J cosskd − L cosS k

3
D ± Î3L sinS k

3
D .

s31d

The HamiltonianHv (21) describes independent oscillations
of the PG in the spines of H bonds in ana helix.

Next, we perform a unitary transformation of the lattice
variables:

ujn =
1

ÎN
o

q

eiqnS "

2Mvq
D1/2

saj ,q + aj ,−q
† d, s32d

pjn = −
i

ÎN
o

q

eiqnS"Mvq

2
D1/2

saj ,q − aj ,−q
† d, s33d

whereaj ,q
† andaj ,q are the operators of creation and annihi-

lation of acoustic phonons with wave numberq and fre-
quency

vq = 2naUsin
q

2
U, na =Îw

M
. s34d

As it is convenient to describe the lattice oscillations in
the helical symmetry representation that we have introduced
for the description of excitons, we define the operatorsbnq as

ajq = o
n

v jnsqdbnq, s35d

where thev jnsqd were given in the description of the excitons
(27). In this formulation, the displacement operator is given
by

ujn =
1

ÎN
o
qn

eiqnv jnsqdS "

2Mvq
D1/2

sbn,q + b−n,−q
† d s36d

and the HamiltonianHv (21) takes the form

Hv = o
nq

"vqSbn,q
† bn,q +

1

2
D . s37d

Thus the elementary excitations are given by the phonons
which correspond to the deformational oscillations of the
lattice, and the excitons which describe the internal Amid
excitations of the PG. As an elementary cell contains three
PG’s, the spectrum consists of three exciton bands which
correspond to the Davydov splitting. This band structure is
shown in Fig. 1 forL=12.4 cm−1 and J=7.8 cm−1, which
correspond to thea- helix values. In these units,k is adimen-
sional and the energy is given in units of"na
=53.7931 cm−1.

Finally, we rewrite the interaction HamiltonianHint (24)
as

Hint =
1

Î3N
o
kqmn

hxsqdBm+n,k+q
† Bm,kbn,q + x*sqdBm,k

† Bm+n,k+qbn,q
† j,

s38d

where

xsqd = ixS 2"

Mvq
D1/2

sinsqd. s39d
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IV. EQUATIONS IN THE ADIABATIC APPROXIMATION

In the adiabatic approximation the wave function of the
system with one quasiparticle is represented as

ucstdl = Ustducestdl, s40d

whereUstd is the unitary operator of the coherent molecule
displacements,

Ustd = expSo
n,q

fbn,qstdbn,q
† − bn,q

* stdbn,qgD , s41d

ucestdl = o
m,k

cm,kstdBm,k
† u0l, s42d

with functions cm,kstd that satisfy the normalization condi-
tion:

o
m,k

ucm,kstdu2 = 1. s43d

The coefficientsbn,qstd in Eq. (41) are, at this stage, arbitrary
functions which will be determined below.

In the adiabatic approximation the equations forcm,kstd
and bn,qstd can be obtained either directly from the time-
dependant Schrödinger equation or as Hamilton equations
for the generalized variablescm,kstd, bn,qstd, and their canoni-
cally conjugated momentas−i /"dcm,k

* std ands−i /"dbn,q
* std by

considering

H = kcuHucl = o
m,k

Emskdcm,k
* cm,k + o

n,q
"vqSbn,q

* bn,q +
1

2
D

+
1

Î3N
o

m,k,n,q
xsqdcm+n,k+q

* cm,ksbn,q + b−n,−q
* d s44d

as a Hamilton functional. The equations are thus given by

i"
dcm,kstd

dt
= Emskdcm,kstd + o

q,n

2ix sin q
Î3NM

Qnsq,tdcm−n,k−qstd,

s45d

i"
dbn,q

dt
= "vqbn,q +

1
Î3N

o
m,q

x*sqdcm,k
* cm+n,k+q. s46d

In the first equation,Qnsq,td is given by

Qnsq,td = S "

2vq
D1/2

sbn,q + b−n,−q
* d. s47d

In fact, the equation forbn,qstd becomes the equation for
Qnsq,td and takes the form

d2Qnsq,td
dt2

+ vq
2Qnsq,td =

2ix sin q
Î3NM

o
k,m

cm,k
* stdcm+n,k+qstd.

s48d

In these expressions, and in what follows, the indexn label-
ing c andQ is defined modulo 3.

Next, we seek the stationary solutions of these equations
by requiring that

cn,kstd = e−ifQstd+kzsstdgcnskd. s49d

This immediately tells us that

Qnsk,td = e−ikzsstd Qnskd. s50d

Here the parameterzsstd corresponds to the center of mass of
the excitatiton.

Substituting this ansatz into our equations, we obtain

f"V + "Vk− Emskdgcmskd = o
n,q

2ix sin q
Î3NM

Qnsqdcm−nsk − qd,

s51d

svq
2 − V2q2dQnsq,td =

2ix sin q
Î3NM

o
k,m

cm
* skdcm+nsk + qd,

s52d

whereV=dQ /dt andV=dzs/dt is the velocity of the propa-
gation of the excitation measured in units of the lattice con-
stants.

Taking into account Eq.(52), we see that Eq.(51) is a
nonlinear integral equations. From Eq.(51) we see thatcmskd
has a maximum at the carrying wave numberkc which cor-
responds to the minimum of"V+"Vk−Emskd, i.e., kcm and
the excitation velocityV are connected by the relation

"V = UdEmskd
dk

U
k=kcm

. s53d

Next, we assume that, in the space representation, the
solution is given by a wave packet broad enough so that it is
sufficiently narrow in thek representation. This means that
cmskd are essentially nonzero only in a small region of values
of k in the vicinity of kcm. In this case we can use the fol-
lowing approximation:

FIG. 1. The three energy bands(31) for J=7.8 cm−1 (equivalent
to 1.55310−22 J) and L=12.4 cm−1 (equivalent to 2.46310−22 J).
k is adimensional; the energy is given in units of"na

=53.7931 cm−1 (equivalent to 1.07310−21 J).
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"V + "Vk− Emskd = L −
"2sk − kcmd2

2mm

, s54d

where

L = f"V + "Vk− Emskdgk=kcm
,

"2

mm

= Ud2Emskd
dk2 U

k=kcm

.

s55d

To solve Eq.(51), we introduce the position dependent
functions

wmsxd =
1

ÎN
o

k

eisk−kcmdxcmskd. s56d

Note that atx=n this is a unitary transformation ofcmskd to
the site representation. Using approximation(54), one can
transform Eq.(51) into a differential equation forwmsxd:

Lwmsxd +
"2

2mm

d2wmsxd
dx2 − o

n

Vnsxde−iskcm−kcsm−nddxwm−nsxd = 0,

s57d

where

Vnsxd =
ix

Î3MN
o

q

eiqxQnsqdsin q. s58d

Note also that Eq.(57) is only a zero-order approximation of
Eq. (51) and so it corresponds to the continuum approxima-
tion. Only in this approximation the soliton velocityV and
frequencyV are constant and the soliton center of mass
evolves with time aszsstd=Vt+z0 andQstd=Vt.

Finally note that, when transforming Eq.(51) into Eq.
(57), one has to be careful with the double summation
sok,q¯d. The wave numbersk andq are in the first Brillouin
zone, −p,k,qøp, and the wave numberk−q also has to be
in this zone. This is the case for small values ofk and q
(normal processes in exciton-phonon interactions). However,
whenk andq are close to the edge of the first Brillouin zone,
it is possible thatuk−qu.p (umklapp processes). In this case
it is nessesary to reduce the wave numberk−q to the first
Brillouin zone using the reciprocal-lattice wave numberg
=2p. This does not change the discrete equations due to the
periodicity of the functions in the space of reciprocal-lattice
vectors, but is essential when introducing continuous func-
tions for the analytical investigations. The umklapp pro-
cesses lead to the appearence of additional terms in Eq.(57)
for which the double summations are performed in the re-
gions near the edges of the Brillouin zone whereuq−ku.p.
The assumption thatck andQsqd are small in these regions
allows us to consider these terms as a perturbation. Here we
do not take this perturbation into consideration. A detailed
analysis can be found in Ref.[16] where it has been shown
that allowing umklapp processes ink space leads to the ap-
pearence of a periodical(with a period of a lattice constant)
Peierls-Nabarro potential barrier for the motion of the soliton
center of mass[17–19,16]. As a result, in discrete lattices,
the instantaneous soliton velocity depends on time and has
an oscillatory component with a period

Td =
2p

Vav
, s59d

whereVav is the average velocity of the soliton propagation
in the chain.

Having found the solutions of Eq.(57), we can then use
the transformation(27) and, taking into account Eqs.(49)
and (56), write down the probability amplitudes for the dis-
tribution of the excitations in ana helix:

C j ,nstd =
1

ÎN
o
m,k

eiknv j ,mskdcm,kstd

=
1
Î3

o
m

e−isV+Vkcmdt+ikcmn+ism+1
3

kcmd j

3wmSn +
1

3
j − Vt − z0D . s60d

From Eq. (52) we obtain the explicit expressions for
Qnsqd at n=0 and ±2p /3, namely

Q0sqd =
2ix sin q

svq
2 − V2q2dÎ3MN

o
m,k

cm,k
* cm,k+q, s61d

Q+sqd =
2ix sin q

svq
2 − V2q2dÎ3MN

o
k

fc0
*skdc+sk + qd

+ c+
* skdc−sk + qd + c−

* skdc0sk + qdg, s62d

Q−sqd = Q+
* s− qd. s63d

Substituting these expressions into Eq.(58), we obtain the
potentialsVnsxd. For example,

V0sxd = −
1

N o
q,k,m

2x2 sin2q

3Msvq
2 − V2q2d

e−ikxcm
* skdeisk+qdxcmsk + qd.

s64d

We can see from Eq.(61) thatQ0sqd is essentially nonzero
only at small values ofq. So we can use the long-wave
approximation and write the phonon dispersion relation(34)
asvq<nauqu. In this caseV0sxd is given by

V0sxd = −
2x2

3ws1 − v2dom

uwmsxdu2, s65d

where v=V/na is a velocity in units of sound velocityna.
Similarly, the potentialsV±sxd are quadratic inwmsxd. There-
fore the system of equations(57) is a system of nonlinear
Schrödinger equations(NLSE’s).

We observe that Eq.(57) admit three types of ground-
state solutions of a soliton type which preserve the helical
symmetry of the system. Such solutions describe solitons
which are formed by excitons from only one of the three
excitonic bands, i.e., only one functionwmÞ0 for a givenm
is nonzero and the other twown=0 with nÞm. In such states,
according to Eqs.(61) and (62), only the total symmetrical
distortion of the a helix takes place, i.e.,Q0sqdÞ0 and
Q±sqd=0. Taking into account Eq.(65), we note that these
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types of solitons are described by the NLSE:

Lwmsxd +
"2

2mm

d2wmsxd
dx2 +

2x2

3ws1 − v2d
uwmsxdu2wmsxd = 0

s66d

together with the normalization condition(43). Its solution is
given by

wmsxd =Îkm

2

1

coshskmxd
s67d

with the eigenvalue

Lm = −
"2km

2

2mm

, s68d

where

km =
mmx2

3"ws1 − v2d
. s69d

Thus from Eq.(55) we find that

"V = Emskcmd − Vkcm −
"2km

2

2mm

. s70d

According to Eq.(60),

C j ,nstd =Îkm

6

e−isVm+Vkcmdt+ikcmsn+1
3

jd+im j

coshkmSn +
1

3
j − Vt − z0D . s71d

This excitation is spatially distributed between the chains
with the probability components given by

Pj ,nstd =
1

3
wm

2Sn +
j

3
− Vt − z0D . s72d

Clearly, Pj =on Pj ,n=1/3. For thetotally symmetric soliton,
m=0, the chains are excited with the same phase, while for
the other two cases,m= ±2p /3 and the excitations in the
spines have the phase shifts ±2p /3.

Note that due to the factors1−v2d in Eqs. (65) and (69)
the soliton velocityV cannot exceed the sound velocityna.
However, there is also a further restriction on the soliton
velocity which follows from Eq.(53). Unlike for the para-
bolic law, the energy dispersion in an exciton band shows
that dEskd /dk has a maximum value. Therefore Eq.(53) has
a solution only whenV does not exceed the maximum exci-
ton group velocityVg=s1/"dfdEskd /dkgmax and so the top
speed of the solitons is determined by the lowest ofna and
Vg. For example, in a simple chain withEskd=−2J cosk,
Vg=2J/", and with the parameters of thea helix, na.Vg.

Below we will consider solitons at low velocities. In this
case, from Eq.(53), we have

kcm = km +
mm

"
V. s73d

Herekm determines the bottom of themth exciton band and
mm is an effective exciton mass near the band bottom. At low

velocities the total energyEm=H of the soliton state is given
by

EmsVd = Ems0d +
1

2
MmV2. s74d

The totally symmetric exciton band has a minimum at
k0=0 and, in the long-wave approximation, we have

E0s0d = E0 − 2J + 2L, m0 =
9"2

2s9J − Ld
. s75d

Therefore the totally symmetric soliton state is characterized
by the width parameter

k0 =
3x2

ws9J − Ld
, s76d

the energy

E0s0d = E0 − 2J + 2L −
x4

3w2s9J − Ld
, s77d

and the mass

M0 = m0 +
8x4

3na
2w2s9J − Ld

. s78d

The other two of the three soliton states are formed by
excitons from the other two bands,m= ±2p /3. Due to the
helical symmetry, the bottoms of these bands are determined
by the nonzero wave numbersk±= ±kd. For ana helix the
parameterkd is small and can be determined in the long-
wave approximation as

kd =
9L

Î3s18J + Ld
. s79d

Thus for these bands we have

E±s0d = E1 = E0 − 2J − L −
3L2

2s18J + Ld
, m± =

9"2

18J + L
; m1.

s80d

Therefore these soliton states are characterized by the
width parameter

k1 =
6x2

ws18J + Lds1 − v2d
, s81d

the total energy at rest

E1s0d = E0 − 2J − L −
3L2

2s18J + Ld
−

2x4

3w2s18J + Ld
, s82d

and by the soliton mass

M1 = m1 +
16x4

3s18J + Ldw2na
2 . s83d

Note that the energies of these three solitons are split from
the bottoms of the corresponding energy bands. We should
add that the solutions of these soliton states were also found
in Ref. [13].
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The energy levels of the last two solitons are degenerate.
However, according to the Jan-Teller theorem, this degen-
eracy can be broken by the distortions of the chains and a
hybridization of these two states can take place. Below we
consider such a case when, i.e.,w±Þ0 andw0=0.

In this case we find from Eq.(57) that w± are determined
by the system of equations

Lw+sxd +
"2

2m1

d2w+sxd
dx2 − V0sxdw+ − e−isk+−k−dxV−sxdw−sxd = 0,

s84d

Lw−sxd +
"2

2m1

d2w−sxd
dx2 − V0sxdw− − eisk+−k−dxV+sxdw+sxd = 0.

s85d

The componentsQ± of the deformation of thea helix, as
well as theQ0 component, are nonzero:

Q+sqd =
2ix sin q

svq
2 − V2q2dÎ3MN

o
k

c+
* skdc−sk + qd. s86d

Substituting this into Eq.(58) we find that, for small veloci-
ties,

V+ = −
2x2

3w
e−isk+−k−dxw+

* sxdw−sxd, V− = V+
* . s87d

The deformational potentialV0 of the totally symetric distor-
tions is given by

V0sxd = −
2x2

3w
fuw+sxdu2 + uw−sxdu2g. s88d

Thus Eqs.(84) and (85) give us a system of NLSE’s:

Lw+sxd +
"2

2m1

d2w+sxd
dx2 +

2x2

3w
suw+u2 + 2uw−u2dw+sxd = 0

s89d

and, equivalently, forw−.
The general solution of these equations, normalized by

the condition(43), is

w± =
1
Î2

eiu±w2, s90d

whereu± are arbitrary phases andw2 satisfies the NLSE and
is therefore given by Eq.(67) with

k2 =
9x2

ws18J + Ld
. s91d

The total energy of this soliton state atV=0 is

E2s0d = E0 − 2J − L −
3L2

2s18J + Ld
−

3x4

2w2s18J + Ld
, s92d

and the soliton mass is

M2 = m1 +
12x4

w2na
2s18J + Ld

. s93d

Representing the energies of the other two solitons(82) in
the formE1s0d=Eb−D with Eb=E±skdd being the correspond-
ing bottom of the energy band and

D =
2x4

3w2s18J + Ld
, s94d

we can write

E2s0d = Ebs0d −
9

4
D = E1s0d −

5

4
D. s95d

Thus we see that the latter hybrid soliton has the lowest
energy.

The distribution of the excitation among the chains is
given by the probability amplitude:

c j ,n
shdstd =Î2

3
e−ifVt−s"/m1dVsn+j /3d−su++u−d/2g

3cosSkdsn + j /3d +
u+ − u−

2
+

2p

3
jDw2Sn +

j

3
,tD .

s96d

Therefore

Pj ,n = uc j ,n
shdstdu2

=
k2

6

1 + cosf2kdsn + j /3d + su+ − u−d − s2p/3d jg

cosh2fk2sn + j /3 − Vt − z0dg
.

s97d

Next, we consider the probability distribution of the exci-
tations summed over all the spines of the helix:

Pnstd = o
j

Pj ,nstd = uw2sn,tdu2S1 −
kd

3Î3
coss2kdn + u+ − u−dD

s98d

for small kd.
Figure 2 showsPj ,n andPn, given by the expressions(97)

and(98), from which we conclude that the probability distri-
butions of the excitations on each spine are given by many-
hump functions, while the total probability distribution is
much smoother and close to the conventional molecular soli-
ton with a small change of the envelope profile due to the
internal structure of the soliton. This property is observed
also in the numerical modeling(see below).

The total probability of the excitation localization on a
given spine

Pjstd = o
n

Pj ,nstdu2

=
1

331 −
pkd

k2 sinh
pkd

k2

cosS2kdVt −
2p

3
j + u+ − u−D4 .

s99d

We see from Eq.(99) that the probability of the excitation
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localization on a given spine is an oscillatory function of
time with the period of oscillations given by

T =
p

kdV
. s100d

Thus the helical symmetry of the system results in the
interspine soliton oscillations with a period of oscillations
that is determined by the soliton velocity and the quasimo-
mentum value corresponding to the bottom of the energy
band(79). These oscillations get mixed up with the oscilla-
tions that arise from the influence of the lattice discretness on
the soliton dynamics which leads to the appearance of the
Peierls-Nabarro potential. The period of these latter oscilla-
tions is also determined by the soliton velocity, Eq.(59), as is
shown in Ref.[16].

V. NUMERICAL MODELING

For the numerical calculations we consider ana-helical
system of lengthN=150 with periodic boundary conditions

f j ,n+N = f j ,n s101d

or, equivalently,

f l+3N = f l , s102d

where f stands forc or b and the indexl ennumerates the
sites along the polypeptide chain andh j ,nj denotes the site
numbern in the j th hydrogen bound spines j =1,2,3d.

It is more convenient, for the numerical simulations, to
use the physically more relevant site representation for the
C j ,n variables and to useuj ,n for the displacements of PG’s
from the positions of their equilibrium. Hereuj ,n are the av-
erage displacements of PG’s in the state(40) and are related
to bn,q by the unitary transformation(36). In these variables
Eqs.(45) and (46) become

i"
dC1,n

dt
= E0C1,n − JsC1,n−1 + C1,n+1d + LsC3,n−1 + C2,nd

+ xsu1,n+1 − u1,n−1dC1,n, s103d

i"
dC2,n

dt
= E0C2,n − JsC2,n−1 + C2,n+1d + LsC1,n + C3,nd

+ xsu2,n+1 − u2,n−1dC2,n, s104d

i"
dC3,n

dt
= E0C3,n − JsC3,n−1 + C3,n+1d + LsC2,n + C1,n+1d

+ xsu3,n+1 − u3,n−1dC3,n, s105d

M
d2uj ,n

dt2
= − ws2uj ,n − uj ,n−1 − uj ,n+1d

+ xsuC j ,n+1u2 − uC j ,n−1u2d, j = 1,2,3. s106d

For n=0 andn=N−1 in the expressions above we take the
appropriate values of the functions determined by our peri-
odicity conditions.

In our studies we have adopted the following procedure.
We have started off with a reasonable field configuration and
then used it as an initial excitation to determine a stationary
solution of our system of equations(103)–(106). Having de-
termined this solution numerically, we have kept on modify-
ing it by an adiabatical increase of the wave vector(thus
increasing the velocity of the soliton), and have found for
each fixed value of the wave vector the corresponding sta-
tionary solution describing a soliton which propagates along
the helix with an increasing nonzero velocity, determined by
the gradually increasing values of the carrying wave vector.

Note that, for ana helix, the question about the initial
configuration is more important than for a simple chain, be-
cause there are three types of solutions, corresponding to the
different symmetries. Studying a similar problem for a
simple linear chain, we had two equivalent approaches of
deriving a stationary solution at zero velocity(see, e.g., Ref.
[16]). Namely, we could start with the system of stationary
equations and find the solution by minimizing the energy
using some standard procedures. Another approach would
use the nonstationary equations which include some dissipa-
tion of the energy in the lattice subsystem. Starting with an
arbitrary localized initial configuration of an excitation, we
would find some time later a stationary solution at zero ve-

FIG. 2. Amplitudes of the excitations along each spine of thea helix, given by expression(97) (a), and total distribution given by Eq.
(98) (b), calculated fork=0.1755,kd=0.422,u+−u−=0.08.
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locity. Then this configuration would be modified by adding
a small carrying wave vector and would be used as a starting
initial condition for the next set of calculations of the system
of equations without any dissipation. This would result in a
solution moving with a small nonzero velocity. Repeating
this procedure further, we would increase the soliton velocity
adiabatically until the velocity reaches the maximum value
corresponding to the chosen parameters of the chain. This
last approach, of using an arbitrary initial configuration, in
the case of a helical structure probably cannot describe all
possible solutions, since it would always lead to the solution
of the lowest energy.

The energy expression can be obtained from Eqs.(23),
(21), and (24). In the site representation the total energy is
given by

Etot = Ee + Ev + Eint, s107d

where

Ee = o
n=0

N−1So
j=1

3

fE0uCu j ,n
2 − JsC j ,n

* C j ,n−1 + C j ,n−1
* C j ,ndg

+ LsC1,n
* C3,n−1 + C3,n−1

* C1,n + C2,n
* C1,n + C1,n

* C2,n

+ C3,n
* C2,n + C2,n

* C3,ndD , s108d

Ev = o
j=1

3

o
n=0

N−1FM

2
Sduj ,n

dt
D2

+
1

2
wsuj ,n − uj ,n−1d2G , s109d

Eint = o
j=1

3

o
n=0

N−1

xsuj ,n+1 − uj ,n−1duCu j ,n
2 . s110d

In our simulations we have taken the numerical values of
the parameters from Ref.[12]: i.e., L=12.4 cm−1 s2.46
310−22 Jd, J=7.8 cm−1 s1.55310−22 Jd, x=0.34310−10 N,
w=19.5 N/m, andÎM /w=1/na=0.99310−13 s. These pa-
rameter values correspond to the Amid-I excitations ina
helices[15,6,12,20].

In our numerical studies we have also followed the con-
ventions of Scott[12] and so, like him, we have used units in
which the energy is measured in units of"na, time in units of
na

−1, and length in units of 10−11 m. In this case the dimen-
sionless computer values of the parameters are

Jcomp=
J

"na
= 0.145, Lcomp= 0.231,

xcomp=
x 3 10−11 m

"na
= 0.318,

wcomp=
w 3 10−22 m2

"na
= 1.825. s111d

The results of the numerical simulations are described below.
First, we have started off the simulations taking as the

initial conditions the function

C1,1= 1 s112d

with all other values ofC j ,n=0 and puttinguj ,n=0. We have
then added an extra absorptive term into the equation foruj ,n
and performed the simulations until we reached a stationary
state solution. The obtained solution described a well defined
solitonic state. Its energy was around −0.550 67. In Fig. 3 we
present the plots of theC andu fields.

We see that this self-trapped state has an inner structure,
i.e., the amplitude of excitation distribution on the individual
spine is a modulated multihump distribution. While the total
(summed over all three spines) distribution of the excitations
has a single-hump pattern, shown in Fig. 4, the distributions
in the individual spines are modulated in the manner of so-
lutions (97). Comparing Figs. 3(a) and 4 we see that the
results obtained by the numerical modeling are well de-
scribed by our analytical model of the hybrid soliton shown
in Fig. 2 . This is particularly true for the excitations summed
over the three spines; only by a very careful analysis of data
in Figs. 2(b) and 4 can one spot any differences between the
two figures.

FIG. 3. Amplitudes of excitation distributionsuC ju2 (a) and the derivative of the PG’s displacements, i.e.,duj ,n=uj+1,n−uj ,n (b) for the
three spines,j =1,2,3, of thea helix.
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A similar inner structure of the soliton can also be seen in
Fig. 6 of Ref.[12]. Thus we can conclude that our numerical
solution, as well as the solution discussed in Ref.[12], de-
scribes the lowest energy of the hybrid solitons. This view is
confirmed also by the numerical estimate of the soliton en-
ergy (92). Thus taking our numerical values(111), we get
E2s0d−E0=−0.550 67 in units of"na which coincides with
the value determined in our numerical simulations.

Having found stationary solutions, we then changed the
functions as follows:

C j ,n → C j einDk,
duj ,n

dt
→ duj ,n

dt
+ suj ,n − uj ,n−1dsinsDkd,

s113d

leavinguj ,n unchanged. This had the effect of giving a small
speed to the soliton, and the distortion of the chain.

We then performed the simulation over a short period of
time. During this time the soliton has been moving and the
small disturbance introduced by the nonperfect transfer of
momentum to the system has spread itself over the lattice.

We then repeated the whole process several times thus
slowly increasing the totalk (in practice we putDk=0.1).
After every step we evaluated the resultant speed of the soli-
ton. Of course, the whole process suffered by the introduced
disturbances; thus gradually it has become more and more
difficult to determine this speed. However, we have found
that each addition of momentum increased this speed by a
decreasing amount suggesting that there is a maximum speed
that the soliton can attain.

In Fig. 5 we present a plot of the resultant speed as a
function of the totalk (i.e., the sum of allDk). We note that
the maximum speed appears to be around 1050 m/s in
Fig. 5.

To check that this limit is not an artifact of our proce-
dures, we have performed further simulations in which we
modified the stepsDk or eliminated the modification of
duij /dt. We have also performed some simulations with ab-
sorption: the configurations were alternatively boosted and

then evolved in time but with a small absorption parameter
added to the equations. These extra terms absorbed some
of the ripples while the boosts were effectively accelerating
the solitons. All these procedures produced similar results
and we have never managed to get the solitons move faster
than with v,1050 m/s. The absorptions did decrease the
deformations of thea helix but they did also reduce the
velocity of the soliton; hence we do believe that the solitons
cannot have larger velocity and that this maximum speed is
determined by the maximum allowed group velocity of the
excitons.

In Fig. 6 we present the plot of the solutions of Eq.(53)
for E±skd [Eq. (31)] with the values ofJ andL given in Eq.
(111) (we recall thatv=V/na). From Fig. 6 we see that,
indeed, the composite soliton cannot have its velocity larger
than the maximum group velocity for one of its two compo-
nents, and for our parameters this velocity is about 1050 m/s.
At wave numberkcr, which corresponds to the maximum
group velocity,d2Emskd /dk2=0 and atkùkcr the balance be-
tween the nonlinearity and the dispersion breakes down for
one of the components and this leads to the decay of the
soliton.

The complex (modulated many-hump) and composite
(three-spine distributed) structure of the soliton manifests it-
self distinctly when the soliton is moving and the interspine
oscillations take place(99). This is seen very clearly in the
oscillations of the probability distribution amplitude for each
spine which is shown in Fig. 7. This phenomenon was al-
ready noted by Scott in Ref.[12]. According to Eq.(100), the
frequency of these oscillations is determined bykd and by the
soliton velocity. It follows from Eq.(79) that the bottom of
the band is attained atkd=0.42.

We have also looked at the other two solitons and tried to
make them move. As has already been mentioned above, an
arbitrary initial configuration, in the case of a helical struc-
ture always leads to the solution of the lowest energy. But
when we take as an initial conditionC j ,n in the form(71) at
V=0, we have obtained, as a result of the calculations, sta-
tionary solutions and these solutions were very close to those

FIG. 4. Amplitudes of the excitation distribution summed over
the three spines,An=o j=1

3 uC j ,nu2 of the a helix.
FIG. 5. Speed of the hybrid soliton evaluated numerically as a

function of k.
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derived in the continuum approximation. The energies of
these stationary solutions were +0.171 form=0 and
−0.550 67 form= ±2p /3 which, again, coincide with the
valuesEms0d−E0 estimated from(77) and (82). For these
states the probability distribution in individual spinesuCu j ,n

2

shows a one-hump pattern without any modulation(see Fig.
8). This differentiates these states from the lowest energy
composite soliton.

We have tried to make these states move. Unfortunately,
the perturbations introduced by the discreteness of the lattice
and by the inexactness of our procedure led to their instabil-
ity. This showed itself in the system evolving into the lowest
energy hybrid soliton.

VI. CONDITIONS FOR THE APPLICABILITY OF THE
ADIABATIC APPROXIMATION

Having found the three types of solutions described in the
previous sections a question then arises about the conditions
of the applicability of the adiabatic approximation in such a
three-spine model.

The Hamiltonian(25) that describes the states of quasi-
particles which interact with phonons, does not have an ana-

lytic solution. The adiabatic approximation describes the
solitonlike states of large polarons when the autolocalization,
within the region of several lattice sites, takes place. This is
one of the three possible approximations which allow us to
represent the Hamiltonian(25) as a sum of two terms: the
main part,H0, and the termH1, which can be considered as
a small correction and therefore for which the perturbation
theory can be developed. The other two approximations cor-
respond to the almost free quasiparticles and to small po-
larons. The realization of one or another of these three re-
gimes depends on the relation between the parameters of the
system. In general the problem can be investigated in the
framework of the variational approach[21–23]. The ground-
state diagram for a simple chain with one exciton band and
one phonon mode was presented in Ref.[21]. This diagram
showed the range of values of the dimensionless coupling
constant and of the nonadiabaticity parameter[relation
"na/ s2Jd] for which one or the other regime was realized.

As has often been mentioned, various properties of the
Davydov solitons ina-helical proteins have been analyzed
using a single chain model. Although such a model gives
good qualitative and sometimes also good quantitative[12]
properties of Davydov solitons, the ground-state diagram
[21,23] shows that the parameters of thea helix applied to a

FIG. 6. The group velocity of the excitation in the bands of the
helix, determined by Eqs.(53) and (31) for J=7.8 cm−1 s1.55
310−22 Jd andL=12.4 cm−1 s2.46310−22 Jd.

FIG. 7. Oscillation frequency of the hybrid soliton as a function
of its speedV.

FIG. 8. Amplitudes of excitation distributionuC ju2, j =1,2,3, of thehelix for solitons, corresponding tom=0 (a) andm= ±2p /3 (b).
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one-chain model, correspond to the state far from the region
where the soliton ground states are realized. This is one of
the reasons why the estimates by Bolterauer[24] and Sch-
weitzer and Cottingham[25] of the Davydov soliton life
time, obtained within a different approach but still based on
the one-chain model, give very small values.

Here we return to this problem and we assess the condi-
tions of the aplicability of the adiabatic approximation for
the a helix basing our discussion, for simplicity, on the so-
lutions describing solitons at rest. Applying a unitary trans-
formation, the Hamiltonian(25) takes the formH=Had
+Hna whereHad is diagonal in the new representation and
describes the adiabatic states of the exciton(electron)-
phonon system. The termHna is an operator of nonadiabatic-
ity which describes phonon-induced transitions between
adiabatic states. Such a transformation was used in Refs.
[26,27] and, based on it, a method of partial diagonalization
was further developed in Refs.[25,28,29].

The partial diagonalization shows clearly that the state-
vector (40) is an eigenstate ofHad with the eigenenergyEs
="V+W (hereW is the energy of lattice deformation) pro-
vided that the functionscm,k andbn,q are stationary solutions
of Eqs. (45) and (46), i.e., Haduc0l=Esuc0l. The virtual ex-
cited adiabatic states, for a given chain deformation(52) can
be found from the linear equation(45).

If Hna is small it is possible to construct the perturbation
series

ucl = uc0l + uc1l + ¯ ,

whereuc0l= usl is the wave vector(40) of the soliton state in
the zero order of the adiabatic approximation anducil is the
ith correction due toHna. According to the general theory of
perturbations the first correction is given by

uc1l = −
Q

a
Hnauc0l, s114d

where we have defined

Q

a
= Q

1

Had − Es
Q

and

Q = 1 − uc0lkc0u = o
aÞs

ualkau.

Note that hereual ennumerates all adiabatic terms ofHad,
Hadual=Eaual. For the convergence of the perturbation series
ucil should be proportional toli with l being a small param-
eter.

The square of the norm of vectorucl is

kcucl = kc0uc0l + kc1uc1l + ¯ = 1 +Osl2d.

Therefore the applicability of the adiabatic approximation is
guaranteed provided that

kc1uc1l ; l2 ! 1. s115d

Taking into account Eq.(114), we can calculate

kc1uc1 = kc0uHna
Q

a2Hnauc0l

= o
a

kc0uHnaualkau
Q

a2ualkauHnauc0l s116d

=
s

D2o
a

fakc0uHnaualkauHnauc0l. s117d

Here we have taken into account the fact that the operator
Q/a2 is diagonal and we have defined

fa =
1

s
kau

D2Q

a2 ual s118d

with D being the energy gap between the solitonic energy
level and the lowest excited one. In Eq.(118)

s = o
aÞs

kau
D2Q

a2 ual s119d

so that oaÞs fa=1. In Eq. (117) the summation does not
include a=s because the diagonal matrix elements of the
nonadiabaticity operator vanish. Next we observe that

o
a

fakc0uHnaualkauHnauc0l ø o
a

kc0uHnaualkauHnauc0l

= kc0uHna
2 uc0l. s120d

Moreover, it is easy to see that

kc0uHna
2 uc0l = kc0uH2uc0l − kc0uHuc0l2 = DE2. s121d

Thus we can derive some estimates without the partial
diagonalization of Hamiltonian(25). In particular, we can
calculateDE2 using the soliton wave function(40) in the
zero-order adiabatic approximation. This way we can esti-
mate the soliton lifetime in one chain and we get the same
result as that obtained by Schweitzer and Cottingham[25],
who calculated the second-order energy correction perform-
ing the partial diagonalization, and by Bolterauer[24] who
calculatedDE2.

So, the condition of the applicability can be writen as

kc1uc1l ø
sDE2

D2 ø 1. s122d

Calculation ofDE2 gives us

DE2 =
1

2SA − o
n,q

"vq
3uQnsqdu2D , s123d

where

A = o
n,q

4"x2 sin2 q

3MNvq
=

16"nax2

3pw
. s124d

Taking into account Eq.(52) we can rewrite Eq.(123) in the
form
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DE2 = o
n,q

2"x2 sin2 q

3MNvq
S1 − uo

m,k
cm,kcm+n,k+qu2D

which corresponds to Bolterauer’s[24] expression after the
transformation to the site representation.

For symmetrical solitonsQ+sqd=Q−sqd=0 and

Q0sqd =
2ix sin q

vq
Î3MN

o
k

cm
* sk + qdcmskd

=
2ix sin q

vq
Î3MN

E
−N/2

N/2

eiqxuwmsxdu2dx, s125d

where

E
−N/2

N/2

eiqxuwmsxdu2dx=
pq

2km sinh
pq

2km

. s126d

Therefore

DE1
2 =

8"nax2

3pw
S1 −

1.8

p2 km
2D . s127d

For the hybrid soliton we have

Q0sqd =
2ix sin q

vq
Î3MN

SE
−N/2

N/2

eiqxuw+sxdu2dx

+E
−N/2

N/2

eiqxuw−sxdu2dxD s128d

and

Q+sqd = Q−
* s− qd =E

−N/2

N/2

eisq+2kddxw+
* sxdw−sxddx,

s129d

DE2
2 =

8"nax2

3pw
S1 −

7.2

p2 k2
2 −

p

6
k2 sin kd cos2kdD .

s130d

In the one-dimensional case, the soliton level(121) is a
single bound level in the lattice deformation potential. Ex-
cited adiabatic states belong to the quasicontinuum spectrum
with eigenenergyLskd="2k2/2mm which is separated from
the soliton level by a gapD="2km

2 /2mm. Therefore we can
estimates [Eq. (119)] as

s =
n

No
k

km
4

sk2 + k2d2 =
nkm

4
, s131d

wheren=1 for the totally symmetric soliton, andn=2 for the
hybrid soliton since, in this case, there are two degenerate
bands.

Finally, we have the conditions for the realization of the
solitonlike states:

l0 =Î2C0

p

wÎ"nas9J − Ld
x2 , 1 s132d

for the total symmetric soliton, and

l1 =Î2C1

p
S2

3
D3/2wÎ"nas18J + Ld

x2 , 1 s133d

for the composite soliton, respectively. Here

C0 = 1 −
1.8

p2 k0
2

and

C1 = 1 −
p

6
kdk2 −

7.2

p2 k2
2,

where we have assumed thatkd!p andkm,1.
Note that the condition(132) coincides with the condition

which can be obtained in the partial diagonalization scheme
for the one chain model[25,28]. This condition indicates that
solitons can exist in soft enough chains and at a strong
enough exciton(electron)-phonon coupling they are stable
against quantum fluctuations. The relation(132) is the in-
verse of the condition for the weak-coupling regime.

The numerical values of the parameters for thea helix
are: J=1.55310−22 J, L=2.46310−22 J, x=35−62
310−12 N, wH=13−19.5 N/m. We can take 1/na=10−13 s.
For these parameters we getl0=2.3−11 for the total sym-
metric soliton, which corresponds to the one-band model.
Therefore, in this case, the adiabatic approximation is not
valid, and, consequently, the soliton is destroyed by quantum
fluctuations. The corresponding estimates for the composite
soliton give the valuel1<1. For instance, forx=62
310−12 N andwH=14.6 N/m we getl2=0.87, and therefore
the perturbation series converges. It is worth adding here that
the larger values of the coupling and the condition that the
chains are softer strengthen the condition for this type of
soliton solution to exist. We should add here that, recently,
experimental studies of Amide I vibrational modes in myo-
globin were performed by Xieet al. [30]. These studies
found that thea helix in proteins can support long-lived
nonlinear states with a characteristic lifetime of 15 ps. This
led the authors to conclude that “nonlinear excitations may
play a significant and important role in the energy transfer in
biomolecules”[30].

VII. CONCLUSIONS

As we have mentioned above, the main aims of this paper
were the study of the soliton states ina-helical proteins tak-
ing into account their helicity structure and the understand-
ing of the origin of the interspine oscillations observed nu-
merically by Scott in Ref.[12]. The soliton states in
a-helical proteins are described by a system of nonlinear
equations(103)–(106). In our study we have restricted the
Hamiltonian of amide excitations to two main terms, namely,
those that describe the intra- and interspine interactions,
while Scott considered ten additional terms of long-range
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resonance interactions. Our results broadly reproduce the re-
sults of Scott. However, there are also some differences,
which we summarize below.

The velocity of the soliton propagation in the numerical
calculations carried out by Scott in Ref.[12], was reported as
V= 3

8na, while our results give the maximum valueV
=0.21na. This is due to the fact that in Ref.[12] further terms
of the resonance interaction of Amid-I vibrations were in-
cluded, which increase the width of the exciton bands and
therefore increase the exciton group velocity. The additional
terms in the Hamiltonian also change the corresponding
value ofkd, but, probably, this change is less significant than
the change of the maximum group velocity. Nevertheless,
our formula(100) of the period of oscillations for the values
na=1013 s−1 and kd=0.42 for thea helix at V= 3

8na gives T
=1.995310−12 s, which practically coincides with the value
obtained by Scott,Tcomp=2310−12 s. Comparing this value
with the radiative lifetime of a nonlinear excitation, experi-
mentally measured by Xieet al. [30] in their recent experi-
mental studies of myoglobin,trad=15 ps, we conclude, that
such a radiative lifetime of a soliton is enough to perform
many oscillations. Therefore we can hope that these oscilla-
tions can be observed experimentally, for example, in the
Raman spectra of proteins. In fact, Scott, comparing experi-
mentally measured lines in Raman spectra of metabolically
active cells with the frequencies of moving solitons, calcu-
lated by him numerically, noticed a “striking similarity”(see,
e.g., Refs.[12,6]).

Our analytical study and the numerical simulations eluci-
date the conditions for the existence of various types of soli-
ton solutions: single-band and mixed two-band solitons. The
entangled two-band(hybrid) solitons break spontaneously
the translational and rotational symmetries, and possess the
lowest energy. Single-band solutions break only the transla-
tional symmetry and preserve the rotational symmetry.
Single-band solitons turn out to be dynamically unstable:
once initially formed, they decay rapidly while propagating.
There are two main reasons for this, which arise from the
helical structure of the system, namely, the absence of the
forbidden gap in the energy spectrum(see Fig. 1) and the
umklamp processes. The absence of the energy gap allows
the transition to the lowest energy state via the interactions
with low-energy phonons. The helical symmetry leads to the
relation cmsk±2pd=cm±1skd, i.e., the mixing of single-band
states takes place, and, as a result, the single-band solutions
decay. This is the reason why given any initial condition the
excitation localizes into the state which corresponds to the
lowest energy, i.e., to the entangled soliton. In particular, this
was the case observed in Ref.[12]. We have managed to
observe such solitons due to the very special choices of the
initial excitations which were very close to the expression for
the stationary single-band soliton at rest.

It is also worth comparing this type of solution in a helical
system with those in a three-spine model without helical
symmetry. In the latter case there is a forbidden gap in the

energy spectrum between the two degenerate bands and the
third band. As a result, the initial excitation with the energy
above the forbidden gap, is self-trapped in a single-band soli-
ton state. The totally symmetric soliton predicted analytically
in Refs. [8,9] was observed numerically in Refs.[10,11].
Such a soliton in a chain without helical symmetry can be
destroyed only if a large amount of energy is supplied to the
system. Therefore these single-band localised solutions are
much more stable dynamically than single-band solitons in
chains with helical structures. This constitutes a qualitative
difference between the three-chain system with an helical
symmetry and the one without it.

The important question about the existence of Davydov
solitons ina-helical proteins remains open. Unlike the case
of conducting polymers, for which there is direct experimen-
tal evidence for the soliton(large polaron and bipolaron)
existence, such data are absent for polypeptides except some
indirect evidences(see, e.g., Refs.[6,30]). The theoretical
aspects of this problem are related to the applicability of the
adiabatic approximation, which is determined by the numeri-
cal values of the parameters of a given system. Solitons can
exist in protein macromolecules provided their parameters
satisfy the condition of the adiabatic approximation. Note,
e.g., that the spring constant for the hydrogen bondwH was
determined in Ref.[20] to be 21 N/m. Taking into account
that the hydrogen bonds in thea helix are 22° oriented, Scott
[12] uses the value 19.5 N/m. Moreover, as it has been
shown above, the effective value isw=g2wH whereg is de-
termined in Eq.(19). For the parameters of thea helix a
=5.4Å and r =1.7 Å we get g=0.9 and thereforew
=17.05 N/m. Thus the geometrical factor helps to satisfy the
condition for the exsistence of a soliton.

As we have seen above, the generally accepted param-
eters for Amid-I excitation do not favor the existence of
single-band solitons. On the other hand, they are proper for
the existence of the entangled soliton states, although the
nonadiabatic corrections are also important and ought to be
taken into account. Thus the one-chain model can give good
qualitative results, but conclusions concerning the existence
and stability of soliton states, based on numerical calcula-
tions within such an oversimplified model, may not always
be correct. Of course, our estimates are relatively rough, and
the method of partial diagonalization of the Hamiltonian
would provide better results. Its generalization to systems
involving three-chain macromolecules can face the problem
of the applicability of the long-wave approximation. In such
cases the partial diagonalization method developed for dis-
crete models by Clogstonet al. [29] may turn out to be
useful. Moreover, the variational methods can give better
results(see, e.g., Refs.[31,22,21,23]) for the crossover states
when the perturbation scheme parameter is not very small.
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